

202101414-1
Report Security Analysis ZITADEL Console
2021-11-10

 1

Table of Contents

1. VERSION CONTROL 2

2. MANAGEMENT SUMMARY 3

3. OVERVIEW OF FINDINGS 4

4. VULNERABILITY SCORING 5

5. BACKGROUND 6

6. SCOPE 6

7. SCHEDULE AND PLACE OF SERVICES 7

8. FINDINGS 8

 2

1. Version Control

Version Date Author Rationale

0.1 2021-05-13 Sven Fassbender First Draft of the Report created

0.2 2021-05-14 Sven Fassbender Findings Added

0.3 2021-05-15 Sven Fassbender Findings Added

0.4 2021-05-16 Sven Fassbender Findings Added

0.5 2021-05-17 Sven Fassbender Findings and Management Summary Added

1.0 2021-05-17 Sven Fassbender First Draft for CAOS AG Created

1.1 2021-05-31 Sven Fassbender Final Report send to CAOS AG, no Changes

Requested

1.2 2021-11-10 Livio Amstutz

(CAOS AG)

Redacted PII

1.3 2021-11-10 Sven Fassbender Redacted PII

 3

2. Management Summary

CAOS AG tasked Fassbender Information Security to perform a security analysis of the

ZITADEL Console web application. The security analysis took place between May 13th and

May 17th, 2021. The analyst was provided with an IAM Administrator account on a publicly

accessible instance of the in-scope application. During the analysis the authentication and

authorization controls were primarily focused. Furthermore, automated tests were conducted

to identify other classes of vulnerabilities. Although, GDPR was not in the primary scope,

some potential issues were identified in this area.

The overall level of security is rated as good, solely one issue was identified with a high

CVSS score. Missing encryption of data at rest, can result in a full loss of confidentiality,

integrity, and availability of the stored data. An attacker with access to the database, such as a

regular administrator, can read and alter the information. In a cloud environment, the risk is

even higher since administrators of the environment itself can also access the data.

The second highest risk is successful attacks on users who solely rely on username and

password as credential. Whilst the platform offers various stronger authentication methods,

the usage of this weak authentication method is still supported. Furthermore, the in-place

controls to prevent efficient online guessing attacks of weak user passwords deviate from

security best practices recommendations.

ZITADEL Console fails to enforce certain IAM policies on the server-side. The policies allow

registration and allow username plus password login, remove those options from the login

page user interface. Nevertheless, it was found that performing those actions is still possible if

the technical details about the HTTP requests are known to the attacker.

It was found that the session credential (access token) is not terminated server side, whenever

the user performs a password change or a manual logout. The likelihood of rogue sessions is

increased due to the increased window of opportunity for an attacker. Session credentials

must be terminated on the client and the server side, whenever a password change or a logout

occurs. An attacker could access the application in the compromised user’s context.

Furthermore, due to missing re-authentication control for changes in the account section, an

attacker could change the users e-mail address and utilize the password forgotten functionality

to persist access to the account.

Integrating the user themselves as a security control, by giving them more information and

power in the session management could further harden the application. For example, the user

should be informed about failed login attempts. Also, an overview of all active sessions with

the option to terminate them can help to prevent and detect rogue sessions.

It was not possible to perform a thorough security analysis of the login with external IDP

feature in the given timeframe.

 4

3. Overview of Findings

No. Title CVSS:3.1

8.1 Data not Encrypted at Rest 8.2 (High)

8.2 Failed Login Attempts Not Displayed 6.5 (Medium)

8.3 Missing Protection Against Online Guessing 6.5 (Medium)

8.4 Consider Restriction of Common or Compromised Passwords 6.5 (Medium)

8.5 IAM Policies not Enforced 5.3 (Medium)

8.6 Username Enumeration Possible 4.3 (Medium)

8.7 Verbose Error Messages 4.3 (Medium)

8.8 Consider Usage of Refresh Token 3.3 (Low)

8.9 Logout does not Terminate Session 3.3 (Low)

8.10 Password Change does not Terminate Session 3.3 (Low)

8.11 Missing Re-Authentication for Sensitive Operations 3.3 (Low)

8.12 Overview of Active Sessions not Displayed 3.3 (Low)

8.13 MFA-Bypass Passwordless Authentication 3.1 (Low)

8.14 Username Recovery Option Missing 2.7 (Low)

8.15 Third-Party Hosted Resources Embedded 2.7 (Low)

8.16 WebAuthn Signature Verification 2.5 (Low)

8.17 PII in Application Logs 2.4 (Low)

8.18 Cacheable HTTPS Response with Sensitive Data 2.2 (Low)

8.19 Implicit Grant Type Supported 2.2 (Low)

8.20 Consider Security.txt 0.0 (None)

8.21 Missing Option to Delete Account 0.0 (None)

8.22 Missing Consent GDPR Third-Person Registration 0.0 (None)

 5

4. Vulnerability Scoring

The findings within this report are scored according to the CVSS:3.1 base metric group. This

scoring considers the following parameters.

The Common Vulnerability Scoring System (CVSS) is used for communicating the

characteristics and severity of software vulnerabilities. The scoring is internationally applied

in the industry and by security researchers.

In case that the necessary data for the base metrics is incomplete or varies, the analyst

assigned the scores following a worst-case approach.

Base Metric Group

Exploitability Impact

Attack Vector

Attack

Complexity

Privileges

Required

User

Interaction

Scope

Confidentiality

Impact

Integrity

Impact

Availibility

Impact

 6

5. Background

CAOS AG, in the sequel denoted as client, tasked Fassbender Information Security, further

denoted as contractor, to perform a security analysis of the ZITADEL Console web

application.

ZITADEL Console is developed and hosted by the client. The web application is internet

facing. The whole service is defined as “Cloud Native Identity and Access Management”

(IAM). Whereas the ZITADEL Console is used by the CAOS AG customers to administer

their dedicated instance of the IAM.

6. Scope

As scope of the security analysis, the client and contractor agreed on 2021-04-26, to the

following:

• ZITADEL Console Web Application

o https://api.zitadel.app

o https://console.zitadel.app

o https://accounts.zitadel.app

o https://issuer.zitadel.app

The analyst has been provided with a user of the following role, which allowed creation of all

subordinate roles:

• IAM Administrator

The security analysis was based on, the latest publicly available OWASP Top 10 web

application security risks:

• Injection

• Broken Authentication

• Sensitive Data Exposure

• XML External Entities

• Broken Access Control

• Security Misconfiguration

• Cross-Site Scripting (XSS)

• Insecure Deserialization

• Using Components with Known Vulnerabilities

• Insufficient Logging & Monitoring

Not all the above listed topics were feasible in the given timeframe. Therefore, the contractor,

as agreed with the client, prioritized the following topics:

• Broken Authentication

• Broken Access Control

 7

7. Schedule and Place of Services

The offered services were provided in the contractor’s premises. The client provided the

contractor with a test environment in the specified period. The services were provided in the

period between 2021-05-13 to 2021-05-17.

The final report will be delivered latest by 2021-05-28. Delivery object will be an encrypted

document, send by e-mail to the following e-mail address.

• florian@caos.ch

 8

8. Findings

This section contains the technical details of all identified findings.

8.1. Data not Encrypted at Rest

Class Data Protection

Effort Low

CVSS:3.1 8.2 (High)

Vector String CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:C/C:H/I:H/A:H

The ZITADEL Console web application does not encrypt data at rest. An attacker with access

to the database, can access the stored secret and personal identification information data.

According to security best practices data at rest must be protected by encryption. The

encryption ensures the confidentiality of the stored data. Depending on the architecture,

different possibilities for encryption of data can be applied or combined. For example:

• Encryption of Hard Disk

• Encryption of Database

• Encryption of Data in Application Layer

It is important to mention, that an attacker with access to the encryption key can of course

decrypt the data. Therefore, the encryption key must be stored separate from the encrypted

data. Encryption keys should be, generated and stored in a separate hardware module e.g.,

HSM.

An attacker with access to the data at rest can access the cleartext information. Depending on

the information that is accessible, the impact varies. Following is listed some information that

may be at risk in the ZITADEL Console web application:

• Personal Identification Information (PII) of users

• Issued Access Token

• OAuth 2.0 Authorization Codes

• Encryption Keys

Recommendation
It is recommended to encrypt data at rest, utilizing encryption keys generated and stored in an

independent and secure location e.g., Google Cloud HSM.

 9

8.2. Failed Login Attempts Not Displayed

Class Session Management

CVSS:3.1 6.5 (Medium)

Vector String CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:L/A:N

The ZITADEL Console web application does not display failed login attempts after a

successful authentication. An attacker may profit of this missing control, since a user will not

know, that he was subject to an attack.

According to security best practices, the user should be informed about failed login attempts

after a successful authentication. Failed logins can result in different scenarios. In one

scenario the attacker is successful, in this case the control of displaying failed login attempts

does not help. In another scenario the attack was not (yet) successful. The attacker may return

later e.g., once the brute-force protection threshold has been reset or more information on the

victim were gathered. In this scenario the user who can see that he has been subject to an

attack, can take countermeasures. These countermeasures can be digital or physical. One

potential countermeasure could be, to renew the password. Another could be to watch out for

shoulder surfing attempts in real-life.

An attacker must have access to the login page of the web application. Furthermore, he must

be in the possession of the victim’s username (see finding 8.6). To be successful the attacker

must know the user’s password. It’s unlikely that this control helps in a scenario where an

attacker has access to the users MFA, the assumption is that in this case the attacker can also

sniff or record the user’s password.

Recommendation
It is recommended to implement the failed login attempts control to give users the ability to

detect that they have been subject to an attack. The following information can be displayed:

• Number of failed login attempts

• Time of the last failed login attempt

• IP-Address and Browser information of the failed login attempts

Furthermore, the user can be assisted with information, on how to react in case that some

number of failed login attempts took place.

 10

8.3. Missing Protection Against Online Guessing

Class Authentication

CVSS:3.1 6.5 (Medium)

Vector String CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:L/A:N

The ZITADEL Console web application does not protect user accounts with an application

layer mitigation mechanism against automated brute-force attacks. An attacker with access to

the login page can perform an online brute-force attack to guess a user’s password.

Account lockout mechanisms can be, depending on the context of the application, the

preferred measure to discourage attackers from online brute-forcing the password of a user.

Whilst rate-limiting and firewalling may mitigate some risks on the network layer. The

account lockout mechanism protects on the application layer. One issue with account lockout

mechanisms, is the potential that a legitimate user locks out himself, by typing the wrong

password repeatedly. Furthermore, an attacker may abuse a lockout mechanism to Denial-of-

Service the user. To minimize those risks, but also implementing an application layer

protection against brute-force attacks, Captchas can be used.

Captchas are online puzzles that are designed to be easily solved by human users, but hard for

machines.

An attacker with access to the login page, who knows a user’s login name e.g., by guessing

(see 8.6) or by shoulder surfing can attempt to brute-force the password. Depending on the

role of the compromised account the attacker can take actions available in the user’s context.

This finding only affects user accounts that have only password authentication enabled. User

accounts that are protected by MFA will not get compromised by a guessed password.

Recommendation
It is recommended to implement a CAPTCHA over an account lockout mechanism. The

solving of a CAPTCHA could be enforced after e.g., ten failed login attempts. This threshold

should be sufficient for users who repeatedly enter wrong passwords but low enough to

discourage an attacker from brute-forcing a user’s password. The threshold value can be reset

after a certain amount of time or after a successful login.

See also recommendations of finding 8.2.

Other possible but more invasive countermeasures for preventing online guessing:

• Account Lockout

• Tar Pit

• Don’t allow login solely by password

 11

8.4. Consider Restriction of Common or Compromised
Passwords

Class Session Management

CVSS:3.1 6.5 (Medium)

Vector String CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:L/A:N

The ZITADEL Console web application does not offer the option for IAM Administrators to

restrict the usage of common and compromised passwords. An attacker can be successful

using a wordlist based brute force attack to takeover user accounts.

According to security best practices, a user should be prevented from using common, weak,

and known to be compromised passwords. Users tend to use or reuse weak or breached

passwords. This behavior is especially risky if additional controls such as MFA are not in

place. To provide administrators with another control option it can be considered to restrict

the usage of those passwords. Even though a “strong” password policy is in place users can

still use passwords like P@ssword123.

An attacker who wants to get access to a user’s account that is protected with a password like

P@ssword123, likely will be successful within hours. In case, that no other authentication

credentials like MFA are required, the attacker can take full control of the user’s account.

Depending on the role of the compromised account the attacker can take actions available in

the user’s context.

Recommendation
It is recommended to restrict the usage of common, weak, and compromised passwords.

For example, the password could be compared with the SHA-1 representation of

compromised passwords, downloadable from haveibeenpwned1. If the result of the

comparison shows that the hash of the selected password is true, the user should be prompted

to select another password.

1 Haveibeenpwned.com, Passwords, https://haveibeenpwned.com/Passwords, last visited 2021-05-15

 12

8.5. IAM Policies not Enforced

Class Authentication

CVSS:3.1 5.3 (Medium)

Vector String CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N

The ZITADEL Console web application fails to disable user registration and password

authentication on the server-side. An attacker who knows the technical details, on how to

register a user, can register a user without access to any projects or organization

information.

An IAM Administrator has the option to define policies for the IAM. These policies also

contain the option to disable the registration feature, as well as disabling login by solely

username plus password. This controls does indeed remove the options from the login page of

the ZITADEL Console. Nevertheless, during the analysis it was found that it is still possible

to register a user and to login with username and password.

To register a user, even if the option is disabled, an attacker must send a HTTP POST request

like the following:

POST /register HTTP/1.1
Host: accounts.zitadel.app
Connection: close
Content-Length: 325
Cache-Control: max-age=0
sec-ch-ua: " Not A;Brand";v="99", "Chromium";v="90"
sec-ch-ua-mobile: ?0
Upgrade-Insecure-Requests: 1
Origin: https://accounts.zitadel.app
Content-Type: application/x-www-form-urlencoded
User-Agent: [REDACTED]
Accept:
text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;
q=0.8,application/signed-exchange;v=b3;q=0.9
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: navigate
Sec-Fetch-User: ?1
Sec-Fetch-Dest: document
Referer: https://accounts.zitadel.app/register
Accept-Encoding: gzip, deflate
Accept-Language: de-DE,de;q=0.9,en-US;q=0.8,en;q=0.7
Cookie: [REDACTED]

gorilla.csrf.Token[REDACTED]&authRequestID=108637909065723281&firstname=piti&lastname=Plats
ch&email=test_user_6%40[REDACTED]&language=&gender=®ister-password=[REDACTED]®ister-
password-confirmation=[REDACTED]®ister-term-confirmation=on

Shortly after the HTTP request is send, an e-mail message like the following is received.

 13

The initialization process can be finished sending the code, as the e-mail states. Afterwards a

login is possible. As can be seen on the following screenshot, it’s not possible to access

organization or project related information.

An attacker with this level of access, could try to identify vulnerabilities within the system

and try to attack other users of the system. During the security analysis, no vulnerabilities

were identified, that could be exploited with this level of access.

The same issue is present in case of the disable login by username and password policy. As

can be seen in the following HTTP request and the subsequent HTTP response, after

providing the password, the OAuth flow is started, and a login is possible.

POST /password HTTP/1.1

 14

Host: accounts.zitadel.app
Connection: close
Content-Length: 205
Cache-Control: max-age=0
sec-ch-ua: " Not A;Brand";v="99", "Chromium";v="90"
sec-ch-ua-mobile: ?0
Upgrade-Insecure-Requests: 1
Origin: https://accounts.zitadel.app
Content-Type: application/x-www-form-urlencoded
User-Agent: [REDACTED]
Accept:
text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;
q=0.8,application/signed-exchange;v=b3;q=0.9
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: navigate
Sec-Fetch-User: ?1
Sec-Fetch-Dest: document
Referer: https://accounts.zitadel.app/userselection
Accept-Encoding: gzip, deflate
Accept-Language: de-DE,de;q=0.9,en-US;q=0.8,en;q=0.7
Cookie: [REDACTED]

gorilla.csrf.Token=[REDACTED]&authRequestID=108656148516759600&loginName=test_user_6%40[RED
ACTED]&password=[REDACTED]

HTTP/1.1 302 Found
Date: Mon, 17 May 2021 14:02:24 GMT
Content-Length: 0
Connection: close
cache-control: no-store
content-security-policy: font-src 'self';manifest-src 'self';default-src 'none';script-src
'self' 'nonce-0onEZRyZUId4ftaLkjJSYoSniiJFGaZ5IYSwpCZuvZA=';img-src 'self';media-src
'none';frame-src 'none';connect-src 'self';object-src 'self';style-src 'self' 'nonce-
0onEZRyZUId4ftaLkjJSYoSniiJFGaZ5IYSwpCZuvZA='
expires: Mon, 17 May 2021 13:02:22 GMT
feature-policy: payment 'none'
location: https://accounts.zitadel.app/oauth/v2/authorize/callback?id=108656148516759600
permissions-policy: payment=()
pragma: no-cache
referrer-policy: same-origin
set-cookie: [REDACTED]
strict-transport-security: max-age=31536000; includeSubDomains
traceparent: 00-465485370ff9371e5154a46e6d7b2872-fa7a8edf6aad4f01-00
vary: Cookie
x-content-type-options: nosniff
x-frame-options: DENY
x-xss-protection: 1; mode=block
x-envoy-upstream-service-time: 1578
CF-Cache-Status: DYNAMIC
cf-request-id: 0a1c3ba0a80000073eec095000000001
Expect-CT: max-age=604800, report-uri="https://report-uri.cloudflare.com/cdn-
cgi/beacon/expect-ct"
Report-To:
{"endpoints":[{"url":"https:\/\/a.nel.cloudflare.com\/report?s=8%2BBsPDKGOEo1cGQZ299fkxOdT1
IjC5hX94tcgcF9pO5dKKqiJdKnC02jpjcoiozYUjiiGiMuZCV2ynV4IOVbxC0fO%2Bf5Kz2ZGNsdZF2IN%2FCkIjXHf
g%3D%3D"}],"group":"cf-nel","max_age":604800}
NEL: {"report_to":"cf-nel","max_age":604800}
Server: cloudflare
CF-RAY: 650d62143c5a073e-FRA
alt-svc: h3-27=":443"; ma=86400, h3-28=":443"; ma=86400, h3-29=":443"; ma=86400

An attacker who can bypass the policy, can still login as the user. Depending on the role of

the compromised account the attacker can take actions available in the user’s context.

 15

Recommendation
It is recommended to enforce the policies on the server-side, whenever an IAM Administrator

defines this control in the policy.

 16

8.6. Username Enumeration Possible

Class Authentication

CVSS:3.1 4.3 (Medium)

Vector String CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:L/I:N/A:N

The ZITADEL Console web application login allows enumeration of usernames, due to a

warning that is showed after entering a non-existing username. An attacker with access to the

login page can perform an online brute-force attack to enumerate existing usernames.

For authentication on the web application at least a username and a password are necessary.

Depending on the installation, the user can also use MFA and password less authentication.

All authentication methods share, that a valid username is required. Therefore, an attacker

must know the username to attack a victims account.

The web application leaks information about existing usernames on the login page. Entering a

non-existing username results in an error message like the following.

On the other hand, when a valid username is entered the flow continues and the user must

enter additional authentication information.

An attacker with access to the login page can enumerate existing usernames by this behavior.

Especially accounts that solely rely on password authentication, can be efficiently attacked

with this knowledge. (See finding 8.2 and 8.3)

Recommendation
It is recommended to not disclose information about existing accounts.

The user should be able to enter all authentication information, an error message should be

presented not until the verification of all provided credentials fails server side. It is important

to ensure that no side channels for enumeration of credentials exist. Sometimes user

credentials can be enumerated by timing side channels. It is recommended to make sure that

the server response time does not differ, even though one of the provided credentials is valid.

 17

8.7. Verbose Error Messages

Class Information Disclosure

CVSS:3.1 4.3 (Medium)

Vector String CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:L/I:N/A:N

The ZITADEL Console web application shows verbose error messages in the HTTP Header

Grpc-Message. This information can be helpful for an attacker to mount further attack steps.

Detailed technical error messages that are useful during the development of an application are

not useful for a user. But an attacker may be able to use this information to conclude which

software components or frameworks are used. This information can be useful to search for or

discover vulnerabilities in the product.

The following HTTP server response shows an exemplary error message.

HTTP/2 200 OK
Date: Thu, 13 May 2021 07:45:48 GMT
Content-Type: application/grpc-web+proto
Content-Length: 0
Grpc-Status: 2
Grpc-Message: ID=SQL-M0dsf Message=Project already exists on organisation Parent=(pq:
duplicate key value
(unique_type,unique_field)=('project_names','test_projekt107952890689153079') violates
unique constraint "primary")
X-Envoy-Upstream-Service-Time: 152
Access-Control-Allow-Origin: https://console.zitadel.app
Access-Control-Allow-Credentials: true
Access-Control-Expose-Headers: *
Cf-Cache-Status: DYNAMIC
Cf-Request-Id: 0a06496ddb00002fa5d2393000000001
Expect-Ct: max-age=604800, report-uri="https://report-uri.cloudflare.com/cdn-
cgi/beacon/expect-ct"
Report-To:
{"endpoints":[{"url":"https:\/\/a.nel.cloudflare.com\/report?s=tR7Wv7cc9qoHahc42lmLLF4lxyd0
eSh%2Bi0UEOBNbJSU8SwaqsjNaU6AuNwaV6zHYAAfBxKzhWlYbZlYMi3sovOWlXtFEGvNEW2MfOKBV2nE%3D"}],"gr
oup":"cf-nel","max_age":604800}
Nel: {"report_to":"cf-nel","max_age":604800}
Server: cloudflare
Cf-Ray: 64ea44f62a7f2fa5-FRA
Alt-Svc: h3-27=":443"; ma=86400, h3-28=":443"; ma=86400, h3-29=":443"; ma=86400

As can be seen in the previous example an error generated by a backend database is present in

the server response. An attacker can conclude that a CockroachDB is in use. Armed with this

knowledge, may ease the discovery of SQL-injection vulnerabilities. No SQL-injection

vulnerabilities were identified in the given timeframe.

Since the web application is an Open-Source project, this information can also be found in the

public repository. Nevertheless, the analyst cannot exclude that the same behavior could lead

to exposure of Closed-Source code elsewhere.

Recommendation
It is recommended to show error-codes like in this example SQL-M0dsf, that can be linked by

the developers to the detailed technical error messages. This error-code can be enriched with a

timestamp, that would allow the user to send this information to the developer, who can look

up the error in the log files.

 18

 19

8.8. Consider Usage of Refresh Token

Class OAuth 2.0 Recommendation

CVSS:3.1 3.3 (Low)

Vector String CVSS:3.1/AV:L/AC:H/PR:L/UI:R/S:U/C:L/I:L/A:N

The ZITADEL Console web application issues access token with an extensive lifetime. An

attacker with access to such a token can impersonate the legitimate user for the validity

period.

The access token is issued after completion of the OAuth 2.0 authentication flow, which can

request multiple credentials of the user for example, username, password, and One-Time-

Password. The server’s response contains the access_token as well as an id_token:

HTTP/1.1 200 OK
Date: Fri, 14 May 2021 09:31:18 GMT
Content-Type: application/json
Connection: close
access-control-allow-credentials: true
access-control-allow-origin: https://console.zitadel.app
cache-control: no-store
expires: Fri, 14 May 2021 08:31:18 GMT
pragma: no-cache
[…]

{"access_token":"yu8eaTXj3T[REDACTED]erfQpyhG--u8nW46E5h[REDACTED]58P-
g","token_type":"Bearer","expires_in":43199,"id_token":"[REDACTED]"}

Consequently, the access tokens are used to authenticate for accessing a protected resource on

the ZITADEL API. Therefore, the access token is sent in the Authorization header as Bearer

Token.

POST /zitadel.auth.v1.AuthService/GetMyUser HTTP/1.1
Host: api.zitadel.app
Connection: close
Content-Length: 5
sec-ch-ua: " Not A;Brand";v="99", "Chromium";v="90"
X-User-Agent: grpc-web-javascript/0.1
Accept-Language: de-DE
sec-ch-ua-mobile: ?0
Authorization: Bearer yu8eaTXj3T[REDACTED]erfQpyhG--u8nW46E5h[REDACTED]58P-g
Content-Type: application/grpc-web+proto
Accept: */*
X-Grpc-Web: 1
x-zitadel-orgid: 107952890689153079
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/90.0.4430.212 Safari/537.36
Origin: https://console.zitadel.app
Sec-Fetch-Site: same-site
Sec-Fetch-Mode: cors
Sec-Fetch-Dest: empty
Accept-Encoding: gzip, deflate

An attacker who gets in the possession of the access token can impersonate the victim for the

validity period. The validity period is around 12 hours in the current implementation. That

results in a huge window of opportunity. Furthermore, the logout function yet does not

 20

terminate the session server-side (see finding 8.9). An attacker must be able to access the

access token to take advantage of this issue.

Recommendation
It is recommended to use refresh and access token. Access token can have a short lifetime and

can be invalidated after a certain amount of resource accesses. On the other hand, the refresh

token can have a longer lifetime, it’s only used every couple of minutes/hours to fetch a new

set of access and refresh token. See the following schematic2:

+--------+ +---------------+
	--(A)------- Authorization Grant --------->			
	<-(B)----------- Access Token -------------			
	& Refresh Token			
	+----------+			
	--(C)---- Access Token ---->			
	<-(D)- Protected Resource --	Resource		Authorization
Client		Server		Server
	--(E)---- Access Token ---->			
	<-(F)- Invalid Token Error -			
	+----------+			
	--(G)----------- Refresh Token ----------->			
	<-(H)----------- Access Token -------------			
+--------+ & Optional Refresh Token +---------------+

This reduces the load on the authorization server, as the resource server does not need to call

the authorization server, whenever a protected resource is accessed.

Furthermore, the impact of a compromised access token is lowered, since the window of

opportunity for an attacker is smaller, due to the shorter lifetime.

Also, refresh token can help to identify compromised sessions. If an attacker compromises a

refresh token and consequently creates a new set of access and refresh token. The legitimate

users refresh token, will be rejected by the authorization server once he tries to fetch a new set

of tokens. This will result in the need to re-authenticate. The authorization server can show a

meaningful error response, which educates the user about the “probably” compromised

refresh token. This will allow the user to take actions to secure the account.

Following some considerations3, for implementing refresh token:

• The scope of the access as well as the refresh token must be limited. Access token

must only be allowed to access a protected resource on the resource server. Refresh

tokens must only be allowed to create a new set of access and optional refresh token.

• Refresh token must be revoked after being used once (refresh token rotation). (See

OAuth-Revocaction4)

2 Datatracker.ietf.org, rfc6749, https://datatracker.ietf.org/doc/html/rfc6749#section-1.5, last visited 2021-05-14
3 Datatracker.ietf.org, rfc6819, https://datatracker.ietf.org/doc/html/rfc6819#section-5.2.2, last visited 2021-05-

16
4 Datatracker.ietf.org, rfc7009, https://datatracker.ietf.org/doc/html/rfc7009#section-2, last visited 2021-05-16

 21

• Whenever a user performs a logout, the refresh token and all access tokens must be

revoked server-side. (See OAuth-Revocaction5)

• Choose rational lifetimes for access and refresh token

• Refresh token should be bound to the client_id, to prevent token theft, whenever a new

token set is requested the client_id must match

5 Datatracker.ietf.org, rfc7009, https://datatracker.ietf.org/doc/html/rfc7009#section-2, last visited 2021-05-16

 22

8.9. Logout does not Terminate Session

Class Session Management

CVSS:3.1 3.3 (Low)

Vector String CVSS:3.1/AV:L/AC:H/PR:L/UI:R/S:U/C:L/I:L/A:N

The ZITADEL Console web application fails to terminate a user session on a manual logout

action. The window of opportunity, for an attacker is extended since the user is not able to

terminate the session.

A manual logout by the user should result in a termination of the issued credential (access

token) on the client as well as on the server side. Not terminating the credential server side

leads to an extended window of opportunity for an attacker.

A manual logout in the web application leads to client-side termination of the credentials.

Nevertheless, it was found that the credentials still can be used to authenticate on the

ZITADEL API.

The following exemplary screenshot shows a HTTP request and response that were send, after

a manual logout was performed in the user interface of the application.

As can be seen in the previous screenshot, the credential in the HTTP Authorization header is

still accepted by the ZITADEL API. The protected resource ListMyUserSessions can be

accessed, and the server response contains the requested information.

An attacker who got in the possession of a user credential (access token) can take advantage

of the extended window of opportunity. He can impersonate the victim for the whole lifetime

Session Lifetime

User Session Extended Window-of-Opportunity

User Login User Logout

 23

of the access token. (Also see findings 8.8 and 8.12) Depending on the role of the

compromised account the attacker can take actions available in the user’s context.

Recommendation
It is recommended to terminate the issued session on a manual logout by the user. The

credential must be deleted on the client side. Furthermore, the credential must be deleted or

revoked on the server side.

It can also be considered, to terminate all existing sessions of that user, when a manual logout

is performed. This would also terminate sessions, that somehow exist in parallel. Sometimes

users forget to manually perform a logout. Depending on the requirements of the application,

this approach can destroy some business logic, therefore this control is recommended

optionally.

In case that a cryptographically signed credential e.g., JSON Web Token (JWT) is used, a

direct termination of the credential is not possible. In general, the validation of JWT basically

takes place by validating the signature and the expiry time encoded in the JWT body. In this

case, a session identifier value should be issued within the JWT. The check of the credential

must then also contain a verification of the session identifier. Once the user performs a

manual logout, the session identifier must be invalidated server side.

 24

8.10. Password Change does not Terminate Session

Class Session Management

CVSS:3.1 3.3 (Low)

Vector String CVSS:3.1/AV:L/AC:H/PR:L/UI:R/S:U/C:L/I:L/A:N

The ZITADEL Console web application does not prompt the user with the option to terminate

the session when a password change was successful. An attacker who is in the possession of a

user session can benefit from a larger window of opportunity.

According to security best practices, a user should be prompted with the opportunity to

terminate all other active sessions after a successful password change. This control can be

helpful for a user who wants to take back control of compromised sessions. (See also finding

8.12)

An attacker must be in the possession of another user’s access token, to take advantage of this

issue. The access tokens are available in the session storage of a user’s web browser. The

access tokens have an extensive lifetime and are not revoked on a logout. (See findings 8.8

and 8.9) Depending on the role of the compromised account the attacker can take actions

available in the user’s context.

Recommendation
It is recommended to prompt the user with the option to terminate other active sessions, after

a successful password change.

 25

8.11. Missing Re-Authentication for Sensitive Operations

Class Authentication

CVSS:3.1 3.3 (Low)

Vector String CVSS:3.1/AV:L/AC:H/PR:L/UI:R/S:U/C:L/I:L/A:N

The ZITADEL Console web application does not force a user to authenticate again, before

performing sensitive operations in the user’s context. An attacker who somehow got in the

possession of an access token can make changes in the user account settings.

According to security best practices, a user should be forced to re-authenticate whenever a

sensitive operation is performed. Sensitive operations can not only affect a single user, such

as change of e-mail address or change of password but also multiple users, such as change of

password policies disable of two-factor-authentication and so on.

For example, this control is also recommended by the W3C in the WebAuthn specification6,

as can be seen in the following excerpt.

When initiating a registration ceremony, interrupt the user interaction after

the e-mail address is supplied and send a message to this address,

containing an unpredictable one-time code and instructions for how to use

it to proceed with the ceremony. Display the same message to the user in

the web interface regardless of the contents of the sent e-mail and whether

or not this e-mail address was already registered.

An attacker must be in the possession of another user’s access token, to take advantage of this

issue. The access tokens are available in the session storage of a user’s web browser. The

access tokens have an extensive lifetime and are not revoked on a logout. (See findings 8.8

and 8.9) Depending on the role of the compromised account the attacker can take actions

available in the user’s context.

Recommendation
To strengthen the security of the web-application and decrease the impact of compromised

tokens a re-authentication for sensitive operations should be considered.

The analyst recommends implementing the re-authentication especially for users with

administrative permissions, such as IAM-Administrator, as the impact of a compromised

token is higher, than for users with less permissions.

6 W3C, WebAuthn, https://www.w3.org/TR/webauthn-2/#sctn-username-enumeration, last visited 2021-05-15

 26

8.12. Overview of Active Sessions not Displayed

Class Session Management

CVSS:3.1 3.3 (Low)

Vector String CVSS:3.1/AV:L/AC:H/PR:L/UI:R/S:U/C:L/I:L/A:N

The ZITADEL Console web application does not display a user’s active sessions. An attacker

with access to a compromised user account can profit from this missing control since a user

does not have the ability to detect the compromised state.

According to security best practices web applications should implement the possibility for a

user to see and manage active sessions. This control not only empowers a user to terminate

old sessions, but also potentially detect and end a compromised state. The active session

overview could also have some meta data related to the session, such as browser type or IP-

address that helps the user to identify the origin of the session.

Implementing the session overview control can decrease the window of opportunity for an

attacker.

An attacker must be in the possession of a compromised account, to take advantage of this

issue. Depending on the role of the compromised account the attacker can take actions

available in the user’s context. The effort for an attacker to fully compromise a user account,

depends on the settings and the users’ choices.

Recommendation
It is recommended to implement a session overview for users of the web application. The user

should be able to manually terminate a session in this view. To allow tracking of the session’s

origin meta data such as IP-address, start-time and browser type can be presented.

 27

8.13. MFA-Bypass Passwordless Authentication

Class Session Management

CVSS:3.1 3.1 (Low)

Vector String CVSS:3.0/AV:P/AC:L/PR:L/UI:R/S:U/C:L/I:L/A:N

The ZITADEL Console web application allows an attacker to login without providing the

MFA credential, in a specific edge case scenario. An attacker with physical access to the

passwordless credential can bypass the MFA requirement by solely providing the password.

It is possible to use passwordless authentication alongside other authentication options. It is

possible to have passwordless authentication available in parallel with password plus MFA

authentication.

During the analysis an edge case was identified, that would allow an attacker to login without

providing the MFA. The attacker must be in the possession of a valid

credentialAssertionData. This data is only issued, if passwordless authentication is enabled in

the IAM policies. If enabled the userselection HTTP response will contain the necessary data,

as can be seen in the following excerpt:

[…]
 <input type="hidden" name="authRequestID" value="108639252417407016"/>
 <input type="hidden" name="credentialAssertionData" value="[REDACTED]"/>
 <input type="hidden" name="credentialData"/>
[…]

In case that in this exact moment the IAM Administrator disables the passwordless

authentication option (Edge Case), the client is still in possession of the

credentialAssertionData.

This data is used by the client to create the following HTTP request:
POST /login/passwordless HTTP/1.1
Host: accounts.zitadel.app
Content-Type: application/x-www-form-urlencoded
Origin: https://accounts.zitadel.app
Accept-Encoding: gzip, deflate
Cookie: [REDACTED]
Connection: close
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
User-Agent: [REDACTED]
Referer: https://accounts.zitadel.app/userselection
Content-Length: 1175
Accept-Language: de-ch

gorilla.csrf.Token=[REDACTED]&authRequestID=108639252417407016&credentialAssertionData=[RED
ACTED]&credentialData=[REDACTED]

The server requires asks the user to enter the password now, since passwordless

authentication is disabled, but entering the MFA is not required.

This very rare edge case is unlikely to ever be exploited in practice. Nevertheless, an attacker

who is in the possession of the username, the password and the passwordless credential could

use this to login without providing the MFA.

 28

Recommendation
It is recommended to enforce MFA in case that passwordless authentication is disabled by the

administrator.

 29

8.14. Username Recovery Option Missing

Class Authentication

CVSS:3.1 2.7 (Low)

Vector String CVSS:3.1/AV:N/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:L

The ZITADEL Console web application lacks an option to recover a forgotten username. A

user who forgets his username, cannot recover it independently, this results in a limited

Denial-of-Service.

For authentication on the web application at least a username and a password are necessary.

Depending on the installation, the user can also use MFA and password less authentication.

All authentication methods share, that a valid username is required.

Sometimes users forget their username for a specific application. Especially when the

username is generated or specified by another entity. The loss of the username results in, at

least a temporary Denial-of-Service since the user must contact the administrator or support to

recover the username.

In this case a Denial-of-Service leads to limited availability of the service for a single user.

Recommendation
It is recommended to implement a functionality, that enables a user to recover a forgotten

username by himself.

For example, the user could be asked to enter his e-mail address. The username could then be

sent by e-mail to the users e-mail address. It’s important to make sure, that by this

functionality no information is leaked to attackers. Therefore, the web application should

respond in the same way, independent if an existing or non-existing e-mail address is entered.

That also applies to the response timing of the server. The response time should be the same

in both scenarios.

 30

8.15. Third-Party Hosted Resources Embedded

Class Information Leakage

CVSS:3.1 2.7 (Low)

Vector String CVSS:3.1/AV:N/AC:L/PR:H/UI:N/S:U/C:L/I:N/A:N

The ZITADEL Console web application embeds resources of third parties. This leads to

information leakage for the application users. A user of the application can be tracked by

third parties.

Information leakages by third-party content arise, when a resource of a third-party domain is

embedded in the web application. (e.g., by href) The user’s browser will automatically fetch

the resources to display the web-content correctly. The third-party service can track the user at

least by his IP-address.

The browsing the following URLs results in server responses that include third party content:

• https://console.zitadel.app/auth/callback?code=-

bUSVJQMyIRxhtLJEFruFsE4o9g7kkR_I221Z99VFieF-

w&state=aGcyRC1nWlZkZ2hVR2hENkpTSXdaMFZ2SzVQdjd3MnIuc1pidDA4dG8

4MGdq;7bd1bf9c-ba3c-49f0-ad38-ae129a20aa1f

• https://console.zitadel.app/signedout?state=

As can be seen in the following server response, Cascading Style Sheets (CSS) are embedded

from a third-party service. Furthermore, the Content-Security-Policy header lists all hosts that

are used for third party content hosting.

HTTP/2 200 OK
Date: Thu, 13 May 2021 06:26:03 GMT
Content-Type: text/html; charset=utf-8
Cache-Control: public, max-age=43200, s-maxage=604800
Content-Security-Policy: font-src 'self' fonts.gstatic.com maxst.icons8.com;manifest-src
'self';connect-src 'self' *.zitadel.app fonts.googleapis.com fonts.gstatic.com
maxst.icons8.com;script-src 'self' 'unsafe-eval';style-src 'self' 'unsafe-inline'
fonts.googleapis.com maxst.icons8.com;img-src 'self';media-src 'none';frame-src
'none';default-src 'none';object-src 'none'
Expires: Thu, 13 May 2021 18:26:03 GMT
Feature-Policy: payment 'none'

[…]
<link rel="stylesheet" href="https://maxst.icons8.com/vue-static/landings/line-
awesome/line-awesome/1.3.0/css/line-awesome.min.css">
[…]

Not only users of the web application may be tracked by the third-party companies but also

the quality of the web application itself can be affected. Especially privacy aware users, tend

to use blockers for known tracking domains, which prevents the browser from fetching the

necessary contents. This results in the web application being displayed in a bad style.

Recommendation
It is recommended to host all necessary content within the trustworthy domain of the web

application.

 31

8.16. WebAuthn Signature Verification

Class Authentication

CVSS:3.1 2.5 (Low)

Vector String CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L

The ZITADEL Console web application has an issue when verifying the WebAuthn signature.

An attacker could alter the signed data.

ZITADEL Console offers the option to use password less authentication. The authentication

flow is based on the WebAuthn client authentication. WebAuthn authentication does not

require a user credential, instead it’s based on a challenge-response procedure.

{"id":"dOL8SdIbTjqgsOZIYsdDtKxCchI","rawId":"dOL8SdIbTjqgsOZIYsdDtKxCchI","type":"public-
key","response":{"authenticatorData":"I68Y7cP-coJ3qFzGJTeSF6GwMIka4iU8-
dG9ISmfAdgFAAAAAA","clientDataJSON":"[REDACTED]","signature":"[REDACTED]","userHandle":"MTA
4MTc2OTI1NjI4ODg2NDI2"}fQ%3D%3D

As can be seen in the previous excerpt, the client provides an assertion signature to enable

verification of the integrity of the value clientDataJSON. This signature should be verified

server side with the client public key that was exchanged during the registration process.

7

The previously shown, JSON serialized data is send in a HTTP request Base64 encoded like

the following.

POST /login/passwordless HTTP/1.1
Host: accounts.zitadel.app
Content-Type: application/x-www-form-urlencoded
Origin: https://accounts.zitadel.app
Accept-Encoding: gzip, deflate
Cookie: [REDACTED]
Connection: close
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
User-Agent: Mozilla/5.0 (iPhone; CPU iPhone OS 14_5_1 like Mac OS X) AppleWebKit/605.1.15
(KHTML, like Gecko) Version/14.1 Mobile/15E148 Safari/604.1
Referer: https://accounts.zitadel.app/loginname
Content-Length: 1179
Accept-Language: de-ch

gorilla.csrf.Token=[REDACTED]&authRequestID=108189069061713312&credentialAssertionData=[RED
ACTED]

During the analysis it was found that it is possible to e.g., modify the last character of the

signature string. As can be seen in the following example, the character A was changed to E.

7 W3C, WebAuthn, https://www.w3.org/TR/webauthn-2/#sctn-op-get-assertion, last visited 2021-05-15

 32

Even though the signature string was modified the server did not return an error message but

continued with the authentication.

{"id":"dOL8SdIbTjqgsOZIYsdDtKxCchI","rawId":"dOL8SdIbTjqgsOZIYsdDtKxCchI","type":"public-
key","response":{"authenticatorData":"[REDACTED]","clientDataJSON":"[REDACTED]","signature"
:"[REDACTED]A","userHandle":"MTA4MTc2OTI1NjI4ODg2NDI2"}fQ%3D%3D

{"id":"dOL8SdIbTjqgsOZIYsdDtKxCchI","rawId":"dOL8SdIbTjqgsOZIYsdDtKxCchI","type":"public-
key","response":{"authenticatorData":"[REDACTED]","clientDataJSON":"[REDACTED]","signature"
:"[REDACTED]E","userHandle":"MTA4MTc2OTI1NjI4ODg2NDI2"}fQ%3d%3d

It could be, that this finding is a false positive, the analyst cannot finally exclude that it is

related to potential partial Base64 encoding of the signature string.

An attacker who can alter the assertion data, could alter the challenge-response or the origin.

This could result in a temporary Denial-of-Service for a single user. The attacker must be able

to modify the TLS protected data on transit, or directly on the victim’s device.

Recommendation
It is recommended to verify this issue with the developer of the respective library, that takes

care of the signature verification.

 33

8.17. PII in Application Logs

Class Data Protection

CVSS:3.1 2.4 (Low)

Vector String CVSS:3.1/AV:N/AC:L/PR:H/UI:R/S:U/C:L/I:N/A:N

The ZITADEL Console web application logs contain personal identification information

(PII). An attacker with access to the application logs can read this information.

According to security best practices, application logs should not contain PII. A recommended

security control is that application logs are stored and backed up on an application

independent storage. This storage can be centralized within a company. In case that this

storage gets compromised the attacker can access the logged PII.

During the analysis it was found that the application logs can contain PII, such as e-mail

addresses and phone numbers.

As can be seen on the previous screenshot, this information can also be accessed by users with

the role IAM Administrator on the user interface.

An attacker with access to the log files can read this information.

Recommendation
It is recommended to prevent PII from being logged in the application logs. Instead, a generic

placeholder should be logged.

 34

8.18. Cacheable HTTPS Response with Sensitive Data

Class Information Leakage

CVSS:3.1 2.2 (Low)

Vector String CVSS:3.1/AV:L/AC:H/PR:L/UI:R/S:U/C:L/I:N/A:N

The ZITADEL Console web application allows caching of server responses with sensitive

information. An attacker with access to the victim’s browser can read the cached data.

According to security best practices and efforts to prevent leakage of Personal Identification

Information (PII), server responses which contain person related information should not be

cached. By default, web browsers cache content to speed up the browsing experience of the

user. Nevertheless, the web server can instruct the browser not to do so, by sending the

following http headers in the response:

Cache-control: no-store
Pragma: no-cache

The following requests and the associated server responses were found to be affected by the

issue:

• https://api.zitadel.app/zitadel.auth.v1.AuthService/GetMyUser

HTTP/2 200 OK
Date: Thu, 13 May 2021 05:19:55 GMT
Content-Type: application/grpc-web+proto
X-Envoy-Upstream-Service-Time: 32
Access-Control-Allow-Origin: https://console.zitadel.app
Access-Control-Allow-Credentials: true
Access-Control-Expose-Headers: *
Cf-Cache-Status: DYNAMIC
Cf-Request-Id: 0a05c3dc5f0000082c8f917000000001
Expect-Ct: max-age=604800, report-uri="https://report-uri.cloudflare.com/cdn-
cgi/beacon/expect-ct"
Report-To:
{"endpoints":[{"url":"https:\/\/a.nel.cloudflare.com\/report?s=Yhr0%2B429YFbFcPKYuSYuMGOYtA
kH07rkyxINfJIjlF%2BakO9fVG54ow5Nv%2F7eGI51omZswkjXy0iCV%2BjahkjCG0bc%2BC1A0JKh3cgWFLGDWjM%3
D"}],"group":"cf-nel","max_age":604800}
Nel: {"report_to":"cf-nel","max_age":604800}
Server: cloudflare
Cf-Ray: 64e96f409f5d082c-CDG
Alt-Svc: h3-27=":443"; ma=86400, h3-28=":443"; ma=86400, h3-29=":443"; ma=86400

[…]
107952890689153079"
sven*0sven@[REDACTED]@[REDACTED]:M
(

Sven
Fassbender"Sven Fassbender* und
[REDACTED]

• https://api.zitadel.app/zitadel.auth.v1.AuthService/ListMyProjectOrgs

HTTP/2 200 OK
Date: Thu, 13 May 2021 05:19:55 GMT
Content-Type: application/grpc-web+proto
X-Envoy-Upstream-Service-Time: 120
Access-Control-Allow-Origin: https://console.zitadel.app

 35

Access-Control-Allow-Credentials: true
Access-Control-Expose-Headers: *
Cf-Cache-Status: DYNAMIC
Cf-Request-Id: 0a05c3dc570000082c48360000000001
Expect-Ct: max-age=604800, report-uri="https://report-uri.cloudflare.com/cdn-
cgi/beacon/expect-ct"
Report-To:
{"endpoints":[{"url":"https:\/\/a.nel.cloudflare.com\/report?s=pLDvqtDzGkEoR%2F%2Bs45Js1PEQ
c7MsS3OP9w9eM6xscnBjiy1FNBd1n060NtSqi1QSD5%2BBtil4ntWv4RLTUW%2Fcg7KKO6c%2BlEpb%2BCNGo7e3BKA
%3D"}],"group":"cf-nel","max_age":604800}
Nel: {"report_to":"cf-nel","max_age":604800}
Server: cloudflare
Cf-Ray: 64e96f408f4e082c-CDG
Alt-Svc: h3-27=":443"; ma=86400, h3-28=":443"; ma=86400, h3-29=":443"; ma=86400

[…]
74[REDACTED]
86[REDACTED]
10[REDACTED]
97[REDACTED]
82[REDACTED]
[…]

• https://api.zitadel.app/zitadel.auth.v1.AuthService/ListMyUserSessions

HTTP/2 200 OK
Date: Thu, 13 May 2021 05:20:02 GMT
Content-Type: application/grpc-web+proto
X-Envoy-Upstream-Service-Time: 27
Access-Control-Allow-Origin: https://console.zitadel.app
Access-Control-Allow-Credentials: true
Access-Control-Expose-Headers: *
Cf-Cache-Status: DYNAMIC
Cf-Request-Id: 0a05c3f8210000082c9b282000000001
Expect-Ct: max-age=604800, report-uri="https://report-uri.cloudflare.com/cdn-
cgi/beacon/expect-ct"
Report-To:
{"endpoints":[{"url":"https:\/\/a.nel.cloudflare.com\/report?s=yZnvhaNpt9KvSflKirN9S5JyfEVQ
3A0E7hw2W7VN2twNvJXg9tGgAG0yFpMXXRG9m1uC8MeyG%2Fjp9MEkzVhGmVqWYqFU2YU5ezQmbpgdi%2Bw%3D"}],"
group":"cf-nel","max_age":604800}
Nel: {"report_to":"cf-nel","max_age":604800}
Server: cloudflare
Cf-Ray: 64e96f6d0dd0082c-CDG
Alt-Svc: h3-27=":443"; ma=86400, h3-28=":443"; ma=86400, h3-29=":443"; ma=86400

[…]
108023199387675094"107952890705930295*
sven:0sven@[REDACTED]BSven FassbenderJ3ðä>
íìò„ðŸû,
[…]

As can be seen in the previous examples, Cloudflare has set the Cf-Cache-Status HTTP

header to DYNAMIC. (Marked blue) That means by default Cloudflare does not store the

resource but that also shows that no explicit setting is in place to instruct Cloudflare not to

store the resource. If the application sends a no-cache header, Cloudflare will respect the

setting and will not store the asset. This will be recognizable by the Cf-Cache-Status HTTP

header BYPASS.

An attacker must have access to a victim’s web browser to access the cached data. The

extracted data may be used by the attacker to conduct further attack steps. Depending on the

 36

Cloudflare handling the information could also end up in the Cloudflare cache. Every entity

with access to this cache could extract the information.

Recommendation
It is recommended to implement the following HTTP headers, in all server responses that may

contain sensitive information:

Cache-control: no-store
Pragma: no-cache

After implementing the respective HTTP headers, it is recommended to also verify the

Cloudflare HTTP header Cf-Cache-Status, which should have the value BYPASS.

 37

8.19. Implicit Grant Type Supported

Class Authentication

CVSS:3.1 2.2 (Low)

Vector String CVSS:3.1/AV:N/AC:H/PR:H/UI:N/S:U/C:L/I:N/A:N

The ZITADEL Console web application supports the implicit grant type. The implicit grant

type can lead to the leakage of access token and is therefore not recommended.

During the analysis it was found that the implicit grant type is theoretically allowed. This

information was identified in the OpenID configuration file:

• https://issuer.zitadel.app/.well-known/openid-configuration

"grant_types_supported":["authorization_code","implicit","urn:ietf:params:oauth:grant-
type:jwt-bearer"],

The implicit grant type was not used during the normal usage of the ZITADEL Console web

application. Nevertheless, it is recommended to follow the recommended security best

practices.

According to security best practices8 the implicit grant type should not be used by clients.

That leads to the conclusion that this grant type should also not be accepted by the server. The

implicit grant flow returns the access token in the URI parameter of the 302-redirect location,

like the following example:

HTTP/1.1 302 Found
[…]
Location: https://xxx/login#access_token=[REDACTED]
[…]

In this case the client web browser would follow the HTTP redirect as following:

GET /login#access_token=[REDACTED]
Host: xxx
[…]

As can be seen in the previous example, the access token would get exposed in the HTTP

GET request as parameter. GET parameters can be visible in application or proxy log files,

therefore it is not recommended to transfer sensitive information in GET parameters. If the

access token would be sent as GET parameter, it would result in an information leakage.

An attacker with access to the respective log, could access the information and mount further

attack steps. In case of the access token, the attacker could impersonate the legitimate user on

the ZITADEL API. Depending on the role of the compromised account the attacker can take

actions available in the user’s context.

Recommendation
It is recommended evaluate the possibility, not to support the implicit grant type.

8 Datatracker.ietf.org, OAuth 2.0 Security Best Current Practice, https://datatracker.ietf.org/doc/html/draft-ietf-

oauth-security-topics#section-2.1.2, last visited 2021-05-16

 38

8.20. Consider Security.txt

Class Informal

CVSS:3.1 0.0 (None)

Vector String CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:N

The ZITADEL Console web application does not offer a security.txt file. An independent

security researcher might have a hard time to identify the right contact person within the

organization to report security issues.

Security researchers discover vulnerabilities from time to time, without having a contract with

the operator of a web-service. A common hurdle in a responsible disclosure process is

identifying the responsible party, which takes care of the disclosure process. Around the year

2017, the proposed standard security.txt was invented. To encourage researchers in reporting

discovered vulnerabilities and streamline this process, it should be present in the ZITADEL

Console web-application.

The security.txt file should be hosted on the following path:

• https://console.zitadel.app/.well-known/security.txt

Detailed information on the file itself can be found here9. The file itself can be generated

using this web-service10.

Recommendation
It is recommended to host a security.txt file with the necessary information for security

researchers. Linking the GitHub hosted Security Policy11 can be considered.

9 Github.com, security-txt, https://github.com/securitytxt/security-txt, last visited 2021-05-14
10 Securitytxt.org, https://securitytxt.org/, last visited 2021-05-14
11 Github.com, ZITADEL Security Policy, https://github.com/caos/zitadel/blob/main/SECURITY.md, last

visited 2021-05-14

 39

8.21. Missing Option to Delete Account

Class DSGVO

CVSS:3.1 0.0 (None)

Vector String CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:N

The ZITADEL Console web application lacks the option, for a user to delete his account.

Whilst the deletion of an account can be requested at the support, it should be considered to

empower the user to do so on his own.

According to the General Data Protection Regulation (GDPR) Art. 1712 the user has the right

to erasure (‘right to be forgotten’).

b) the data subject withdraws consent on which the processing is based

according to point (a) of Article 6(1), or point (a) of Article 9(2), and where

there is no other legal ground for the processing;

To lower the potential administrative overhead for the operators of the web-service, it can be

considered to give the end-user the option to delete an account and all related data.

Furthermore, the withdrawal of consent could be targeted with this functionality.

The analyst cannot determine the potential damage that can result in case of a GDPR

violation. Therefore, the impact is set to None.

Recommendation
The analyst recommends implementing the delete functionality in the “edit Account” section,

to empower an end-user and thus strengthen then informal self-determination of the

individual.

It is recommended implementing a re-authentication step before account related critical

operations like this can take place. (See finding 8.11)

12 GDPR Art. 17, Right to erasure, https://gdpr-info.eu/art-17-gdpr/, last visited 2021-05-14

 40

8.22. Missing Consent GDPR Third-Person Registration

Class GDPR

CVSS:3.1 0.0 (None)

Vector String CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:N

The ZITADEL Console web application does not request the user consent, in case that

another person created the account in the web interface. A user could use the web application

without GDPR consent.

According to General Data Protection Regulation (GDPR) Art.713 the operator of the web

application shall be able to demonstrate that the user has given his consent for processing of

his personal data.

In case that an administrator creates a user account within the application, the user will

receive an e-mail with instructions on how to set the user password. This process does not

contain a step where the user must give his consent for processing of personal data.

Another issue within the actual design is, that an administrator can enter personal information

about the user, such as e-mail address, name, forename, and gender. This may hurt the users

right for informal self-determination.

The analyst cannot determine the potential damage that can result in case of a GDPR

violation. Therefore, the impact is set to None.

Recommendation
It is recommended to consult an GDPR-Expert if the actual practice is in line with the GDPR

requirements.

In doubt it is recommended to remove the option for an administrator to enter person related

information. Instead, users could be animated to use the registration functionality of the web

application. Open registrations can pose a risk to a company’s IAM, therefore additional

countermeasures must be implemented to limit the group of people who can register. To make

sure that only persons who are part of the company can register, a domain whitelist can be

implemented. This whitelist can be maintained by the administrator.

Another, less scalable approach is to only generate initialization codes, which can be

manually distributed by the administrator of the platform.

13 GDPR Art. 7, Conditions for consent, https://gdpr-info.eu/art-7-gdpr/, last visited 2021-05-15

	1. Version Control
	2. Management Summary
	3. Overview of Findings
	4. Vulnerability Scoring
	5. Background
	6. Scope
	7. Schedule and Place of Services
	8. Findings

